Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

About me

Posts

Future Blog Post

less than 1 minute read

Published:

This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.

Blog Post number 4

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

portfolio

publications

HAWC High Energy Upgrade with a Sparse Outrigger Array

Published in Proceedings of Science, 2018

The High Altitude Water Cherenkov (HAWC) gamma-ray observatory consists of 300 water Cherenkov detectors and has been fully operational since March 2015 in central Mexico. It detects cosmic- and gamma-ray showers in the TeV energy range. For multi-TeV energies, the shower reconstruction and hence the performance of the detector is affected by the partial containment of the showers within the array. To improve the sensitivity at the highest energies, HAWC is being upgraded with an outrigger array. It consists of 350 comparably much smaller water Cherenkov detectors, sparsely distributed around the HAWC main array. It will increase the instrumented area by a factor of 4-5. In this contribution, we will present the current status of the upgrade as well as simulation results on anticipated improvements in the performance of the observatory.

Download here

A template-based γ-ray reconstruction method for air shower arrays

Published in Journal of Cosmology and Astroparticle Physics, 2019

We introduce a new Monte Carlo template-based reconstruction method for air shower arrays, with a focus on shower core and energy reconstruction of γ-ray induced air showers. The algorithm fits an observed lateral amplitude distribution of an extensive air shower against an expected probability distribution using a likelihood approach. A full Monte Carlo air shower simulation in combination with the detector simulation is used to generate the expected probability distributions. The goodness of fit can be used to discriminate between γ-ray and hadron induced air showers. As an example, we apply this method to the High Altitude Water Cherenkov γ-ray Observatory and its recently installed high-energy upgrade. The performance of this method and the applicability to air shower arrays with mixed detector types makes it a promising reconstruction approach for current and future instruments.

Download here

Reconstruction and Analysis of Highest Energy γ-Rays and its Application to Pulsar Wind Nebulae

Published in heiDOK, 2019

The High Altitude Water Cherenkov (HAWC) γ-ray observatory detects cosmic- and γ-rays in the TeV energy range. HAWC was recently upgraded with a sparse detector array (the outrigger array), which increases the instrumented area by a factor of 4-5 and will improve the sensitivity at energies greater than 10 TeV. This thesis consists of a number of contributions towards the improvement of the performance of HAWC at the highest energies and the study of a prominent high energy source, 2HWC J2019+367. To decide on components of the outrigger array, simulation input is provided. A new Monte Carlo template-based reconstruction method for air shower arrays is developed. It reconstructs the core location and energy of γ-ray showers. The goodness of fit of the method is utilised to separate the cosmic- and γ-ray showers. This method significantly improves the HAWC shower reconstruction and combines the reconstruction of HAWC and the outrigger array. In-depth spectral and morphological studies of 2HWC J2019+367 are performed. 2HWC J2019+367 shows a hint of energy-dependent morphology. A new HAWC source is discovered in the vicinity associated with VER J2016+371. The preferred direction of the X-ray and TeV emission indicates their association, and their combined spectral modelling show that 2HWC J2019+367 is likely to be the TeV pulsar wind nebula of PSR J2021+3651.

Download here

Halo fraction in TeV-bright pulsar wind nebulae

Published in Astronomy & Astrophysics, 2020

The discovery of extended TeV emission around the Geminga and PSR B0656+14 pulsars, with properties consistent with free particle propagation in the interstellar medium (ISM), has led to the suggestion of “TeV halos” as a separate source class, which is distinct from pulsar wind nebulae. This has sparked considerable discussion on the possible presence of such halos in other systems. In defining halos as regions where the pulsar no longer dominates the dynamics of the interstellar medium, yet where an over-density of relativistic electrons is present, we make an assessment of the current TeV source population associated with energetic pulsars in terms of size and estimated energy density. Based on two alternative estimators, we conclude that a large majority of the known TeV sources have emission originating in the zone that is energetically and dynamically dominated by the pulsar (i.e. the pulsar wind nebula), rather than from a surrounding halo of escaped particles diffusing into the ISM. Furthermore, whilst the number of established halos will surely increase in the future since there is a known large population of older, less energetic pulsars, we find that it is unlikely that such halos contribute significantly to the total TeV γ-ray luminosity from electrons accelerated in pulsar wind nebulae due to their lower intrinsic surface brightness.

Download here

Spectrum and Morphology of the Very-high-energy Source HAWC J2019+368

Published in The Astrophysical Journal, 2021

The MGRO J2019+37 region is one of the brightest sources in the sky at TeV energies. It was detected in the second HAWC catalog as 2HWC J2019+367 and here we present a detailed study of this region using data from HAWC. This analysis resolves the region into two sources: HAWC J2019+368 and HAWC J2016+371. We associate HAWC J2016+371 with the evolved supernova remnant CTB 87, although its low significance in this analysis prevents a detailed study at this time. An investigation of the morphology (including possible energy-dependent morphology) and spectrum for HAWC J2019+368 is the focus of this work. We associate HAWC J2019+368 with PSR J2021+3651 and its X-ray pulsar wind nebula, the Dragonfly nebula. Modeling the spectrum measured by HAWC and Suzaku reveals a ∼7 kyr pulsar and nebula system producing the observed emission at X-ray and γ-ray energies.

Download here

Galactic gamma-ray and neutrino emission from interacting cosmic-ray nuclei

Published in Astronomy & Astrophysics, 2022

We present a study of the expectations for very-high-energy (VHE) to ultra-high-energy (UHE) gamma-ray and neutrino emission from interacting cosmic rays in our Galaxy as well as a comparison to the latest results for the Galactic UHE diffuse emission. We demonstrate the importance of properly accounting for both the mixed cosmic-ray composition and the gamma-ray absorption. We adopt the wounded-nucleon model of nucleus interactions and provide parameterisations of the resulting gamma-ray and neutrino production. Nucleon shielding due to clustering inside nuclei is shown to have a measurable effect on the production of gamma rays and is particularly evident close to breaks and cutoffs in mixed-composition particle spectra. The change in composition around the ‘knee’ in the cosmic ray spectrum has a noticeable impact on the diffuse neutrino and gamma-ray emission spectra. We show that current and near-future detectors can probe these differences in the key energy range from 10 TeV to 1 PeV, testing the paradigm of the universality of the cosmic ray spectrum and composition throughout the Galaxy.

Download here

Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories

Published in Astronomy & Astrophysics, 2022

The data from particle detector arrays such as the HAWC observatory can be adapted to the GADF and thus analyzed with Gammapy. A common data format and shared analysis tools allow multi-instrument joint analysis and effective data sharing. To emphasize this, a sample of Crab nebula event lists is made public with this paper. Because of the complementary nature of pointing and wide-field instruments, this synergy will be distinctly beneficial for the joint scientific exploitation of future observatories such as the Southern Wide-field Gamma-ray Observatory and CTA.

Download here

HESS J1809−193: a halo of escaped electrons around a pulsar wind nebula?

Published in Astronomy & Astrophysics, 2023

Our modelling indicates that based on the spectrum and spatial extent of HESS J1809-193, the extended H.E.S.S. component is likely caused by inverse Compton emission from old electrons that form a halo around the pulsar wind nebula. The compact component could be connected to either the pulsar wind nebula or the supernova remnant and molecular clouds. Due to its comparatively steep spectrum, modelling the Fermi-LAT emission together with the H.E.S.S. components is not straightforward.

Download here

Application of Graph Networks to background rejection in Imaging Air Cherenkov Telescopes

Published in Journal of Cosmology and Astroparticle Physics, 2023

Imaging Air Cherenkov Telescopes (IACTs) are essential to ground-based observations of gamma rays in the GeV to TeV regime. One particular challenge of ground-based gamma-ray astronomy is an effective rejection of the hadronic background. We propose a new deep-learning-based algorithm for classifying images measured using single or multiple Imaging Air Cherenkov Telescopes. We interpret the detected images as a collection of triggered sensors that can be represented by graphs and analyzed by graph convolutional networks. For images cleaned of the light from the night sky, this allows for an efficient algorithm design that bypasses the challenge of sparse images in deep learning approaches based on computer vision techniques such as convolutional neural networks. We investigate different graph network architectures and find a promising performance with improvements to previous machine-learning and deep-learning-based methods.

Download here

talks

teaching

Teaching experience 1

Undergraduate course, University 1, Department, 2014

This is a description of a teaching experience. You can use markdown like any other post.

Teaching experience 2

Workshop, University 1, Department, 2015

This is a description of a teaching experience. You can use markdown like any other post.